TABLE ERRATA

613.—RAVINDRA KUMAR & M. K. JAIN, Quadrature Formulas for Semi-Infinite Integrals, Math. Comp., v. 28, 1974, pp. 499–503.

The expression for ϕ_3 on p. 501 should have constant term $-\frac{1}{14}$. The first heading in Table 1 should be "n". The weights for n=4, 5 in Table 1 should read:

n = 5	n = 4
(-2)0.483911318666	(-2)0.509359137224
(-2)0.261732005650	(-2)0.240398302919
(-3)0.119047619048	(-4)0.781190279565
(-6)0.276711090830	(-7)0.641463698229
(-11)0.246102967427	

They have been computed to twelve significant figures, using the recurrence formula (6) and standard procedures [1, p. 290, (v)] for computing the weights and abscissae of Gaussian quadrature formulae.

The omissions in the "Formula (16)" column of Table 2 should be -1×10^{-8} for n = 4, and zero for n = 5. (Both of these values were computed to eight figures to be consistent with Table 2.)

The corresponding values in the "Upper bound (15)" column are 223×10^{-8} (n=4) and 22080×10^{-8} (n=5). If $f^{(2n)}(\xi)$ in equation (15) is replaced by $\max_{0 \le x \le \infty} |f^{(2n)}(x)|$ as the authors have suggested, all numbers appearing in this column should be positive.

R. P. SAGAR A. M. SIMAS

Departamento de Química Fundamental Universidade Federal de Pernambuco Recife-PE, Brazil

1. W. Gautschi, On generating orthogonal polynomals, SIAM J. Sci. Statist. Comput. 3 (1982), 289–317.